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Here we revisit a specific two-loop model of neutrino mass, independently proposed by

Babu and Zee. We point out that current constraints from neutrino data can be used to

derive strict lower limits on the branching ratio of flavour changing charged lepton decays,

such as µ → eγ. Non-observation of Br(µ → eγ) at the level of 10−13 would rule out

singly charged scalar masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse)

neutrino mass hierarchy. Conversely, decay branching ratios of the non-standard scalars

of the model can be fixed by the measured neutrino angles (and mass scale). Thus, if the

scalars of the model are light enough to be produced at the LHC or ILC, measuring their

decay properties would serve as a direct test of the model as the origin of neutrino masses.
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1. Introduction

During the past few years neutrino oscillation experiments have firmly established that

neutrinos have non-zero masses and mixing angles among the different generations [1].

While for the absolute scale of neutrino mass only upper limits of the order mν ∼ O(2 eV)

exist [2], two neutrino mass squared differences and two neutrino angles are by now known

quite precisely [3]. These are the atmospheric neutrino mass, ∆m2
Atm = (2.0 − 3.2) [10−3

eV2], and angle, sin2 θAtm = (0.34 − 0.68), as well as the solar neutrino mass ∆m2
¯ =

(7.1 − 8.9) [10−5 eV2], and angle, sin2 θ¯ = (0.24 − 0.40), all numbers at 3 σ c.l. For the

remaining neutrino angle, the so-called Chooz [4] or reactor neutrino angle θR, a global fit

to all neutrino data [3] currently gives a limit of sin2 θR ≤ 0.04 @ 3 σ c.l.

From a theoretical perspective, there exist several options to explain the smallness

of the observed neutrino masses. Perhaps the simplest - but certainly the most popular

- possibility is the seesaw mechanism [5 – 8]. Many variants of the seesaw exist, see for

example the recent review [9]. However, most realizations of the seesaw make use of a

large scale, typically the Grand Unification Scale, to suppress neutrino masses and are,

therefore, only indirectly testable.

On the other hand, many neutrino mass models exist, in which the scale of lepton

number violation can be as low as the electro-weak scale or lower. Examples are super-

symmetric models with violation of R-parity [10, 11], models with Higgs triplets [8] or a

combination of both [12], leptoquarks [13] or radiative models, both with neutrino masses

at 1-loop [14, 15] or at 2-loop [13, 16, 17] order. Radiative mechanisms might be considered

especially appealing, since they generate small neutrino masses automatically, essentially

due to loop factors.

In this paper we will concentrate on a model of neutrino masses, proposed indepen-

dently by Zee [16] and Babu [17], in which neutrino masses arise only at 2-loop order. The

model introduces two new charged scalars, h+ and k++, both singlets under SU(2)L, which
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Figure 1: Feynman diagram for the 2-loop Majorana neutrino masses in the model of [16, 17].

couple only to leptons. One can easily estimate, see figure 1 and the discussion in the next

section, that neutrino masses in this setup are of order mν ∼ (f2h)/(16π2)2(m2
µ/mS), i.e.

O ∼ 1 eV for couplings f and h of order O(1) and scalar mass parameters, mS , of or-

der O(100) GeV. Given that current neutrino data requires at least one neutrino to have a

mass of order O(0.05) eV, one expects that the new scalars should have masses in the range

O(0.1−1) TeV. The model is therefore potentially testable at near-future accelerators, such

as the LHC or ILC.

Babu and Macesanu [18] recently re-analyzed this model in light of solar and atmo-

spheric neutrino oscillation data. They identified the regions in parameter space, in which

the model can explain the experimental neutrino data and tabulated in some detail con-

straints on the model parameters, which can be derived from the non-observation of various

lepton flavour violating decay processes. Here, we extend upon the results presented in [18]

by pointing out that (a) current neutrino data can be used to derive absolute lower limits

on the branching ratios of the processes lα → lβγ. Especially important in view of future

experimental sensitivities [19] is that Br(µ → eγ) ≥ 10−13 is guaranteed for charged scalar

masses smaller than 590 GeV (5.04 TeV) in case of normal (inverse) neutrino mass hierar-

chy. And (b) decay branching ratios of the non-standard scalars of the model can be fixed

by the measured neutrino angles (and mass scale). Thus, if the scalars of the model are

light enough to be produced at the LHC or ILC, measuring their decay properties would

serve as a direct test of the model as the origin of neutrino masses.

The rest of this paper is organized as follows. In the next section, we discuss the

Lagrangian of the model, as well as its parameters in light of current oscillation data. In

this part we will make extensive use of the results of [18]. In section 3, we calculate flavour

violating charged lepton decays, la → lblcld and lα → lβγ, discussing their connection

with neutrino physics in some detail. Then, we consider the decays of the new scalars

at future colliders, presenting ranges for various decay branching ratios as predicted by

current neutrino data. We then close with a short discussion.

2. Neutrino masses at 2-loop

As mentioned above, the model we consider [16, 17] is a simple extension of the standard

model, containing two new scalars, h+ and k++, both singlets under SU(2)L. Their coupling
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to standard model leptons is given by

L = fαβ(LT i
αLCLj

βL)εijh
+ + h′

αβ(eT
αRCeβR)k++ + h.c. (2.1)

Here, LL are the standard model (left-handed) lepton doublets, eR the charged lepton sin-

glets, α, β are generation indices and εij is the completely antisymmetric tensor. Note that

f is antisymmetric, while h′ is symmetric. Assigning L = 2 to h− and k−−, eq. (2.1) con-

serves lepton number. Lepton number violation in the model resides only in the following

term in the scalar potential

L = −µh+h+k−− + h.c. (2.2)

Here, µ is a parameter with dimension of mass, its value is not predicted by the model.

However, vacuum stability arguments can be used to derive an upper bound for this pa-

rameter [18]. For mh ∼ mk this bound reads

µ ≤ (6π2)1/4mh. (2.3)

The setup of eq. (2.1) and eq. (2.2) generates Majorana neutrino masses via the two-loop

diagram shown in figure 1. The resulting neutrino mass matrix can be expressed as

Mν
αβ =

8µ

(16π2)2m2
h

fαxωxyfyβI
(

m2
k

m2
h

)

, (2.4)

with summation over x, y implied. The parameters ωxy are defined as ωxy = mxhxymy,

with mx the mass of the charged lepton lx. Following [18] we have rewritten hαα = h′
αα

and hαβ = 2h′
αβ . I(r) finally is a dimensionless two-loop integral given by1

I(r) = −
∫ 1

0

dx

∫ 1−x

0

dy
1

x + (r − 1)y + y2
log

y(1 − y)

x + ry
. (2.5)

For non-zero values of r, I(r) can be solved only numerically. We note that for the range of

interest, say 10−2 ≤ r ≤ 102, I(r) varies quite smoothly between (roughly) 3 ≤ I(r) ≤ 0.2.

Eq. (2.4) generates only two non-zero neutrino masses. This can easily be seen from

its index structure: Det(Mν) = Det(fαxωxyfyβ) = Det(fαβ) = 0. The model therefore

can not generate a degenerate neutrino spectrum. One can find the eigenvector for the

massless state, it is proportional to

vT
0 = N (1,−ε, ε′) (2.6)

where N = (1 + ε2 + ε′2)−1/2 is a normalization factor. Here we have introduced

ε =
feτ

fµτ
, ε′ =

feµ

fµτ
. (2.7)

With Mν .v0 = 0 one can express the parameters ε and ε′ also in terms of the entries of the

neutrino mass matrix. A straightforward calculation yields

ε =
m12m33 − m13m23

m22m33 − m2
23

, (2.8)

ε =
m12m23 − m13m22

m22m33 − m2
23

.

1We correct a minor misprint in eq. (7) of [18].
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Interestingly, eq. (2.8) can be rewritten directly as a function of the measured neutrino

angles. For normal hierarchy, i.e. mν1,2,3
' (0,m,M), one obtains2

ε = tan θ12

cos θ23

cos θ13

+ tan θ13 sin θ23e
−iδ, (2.9)

ε′ = tan θ12

sin θ23

cos θ13

− tan θ13 cos θ23e
−iδ .

Note, that eq. (2.9) does not depend on neutrino masses, and that current data on neutrino

angles require both ε and ε′ to be non-zero. On the other hand, in the case of inverse

hierarchy, mν1,2,3
' (M,±M + m, 0), eq. (2.8) leads to

ε = − cot θ13 sin θ23e
−iδ, (2.10)

ε′ = cot θ13 cos θ23e
−iδ.

Again, both ε and ε′ have to be different from zero. Note that δ in eq. (2.9) and (2.10) is

a CP-violating phase, which reduces to a CP-sign δ = 0, π in case of real parameters.

With the equations outlined above, we are now in a position to give an estimate of the

typical size of neutrino masses in the model. For an analytical understanding, the following

approximation is quite helpful. Since me ¿ mµ,mτ , ωee, ωeµ and ωeτ are expected to be

much smaller than the other ωαβ. Then, in the limit ωee = ωeµ = ωeτ = 0, eq. (2.4) reduces

to

Mν = ζ















ε2ωττ + 2εε′ωµτ + ε′2ωµµ εωττ + ε′ωµτ −εωµτ − ε′ωµµ

· ωττ −ωµτ

· · ωµµ















, (2.11)

where

ζ =
8µ

(16π2)2
f2

µτ

m2
h

I
(

m2
k

m2
h

)

. (2.12)

From eq. (2.11) it is easy to estimate the typical ranges of parameters, for which the model

can explain current neutrino data. In case of normal hierarchy, a large atmospheric angle

requires ωµµ ' −ωµτ ' ωττ . Thus, we find the constraint

hττ '
(

mµ

mτ

)

hµτ '
(

mµ

mτ

)2

hµµ. (2.13)

On the other hand, a solar angle of order tan θ¯ ' 1√
2

requires ε ∼ ε′ ' 1/2, see eq. (2.9).

Inverse hierarchy still requires ωµµ ' ωµτ ' ωττ , although with a different relative sign,

while ε and ε′ have to be much larger, i.e. ε ∼ ε′ ' M
m , see also eq. (2.10).

What is the maximal neutrino mass the model can generate? Using eqs (2.3) and (2.13),

this upper limit can be estimated choosing hµµ maximal. Motivated by perturbativity,

2We use the notation m '
q

∆m2
¯ and M '

p

∆m2

Atm
, as well as mν3

' 0 for inverse hierarchy. This

has the advantage that θ12 = θ¯, θ23 = θAtm and θ13 = θR for both hierarchies.
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we choose hµµ = 1.3 Then, mk >∼ 800 GeV is required (see the next section), and with

mh = 100 GeV, I(r) ' 0.3 results. Putting finally fµτ = 0.03 we arrive at mν3
' 0.05 eV.

Since all other parameters in this estimate have been put to extreme values, fµτ ≥ 0.03

will be required in general. Obviously, even considering only neutrino data, the parameters

of the model are already severely constrained.

3. Flavour violating charged lepton decays

Due to the flavour off-diagonal couplings of the k++ and h+ scalars to SM leptons, the

model has sizeable non-standard flavour violating charged lepton decays. An extensive list

of constraints on model parameters, derived from the observed upper limits of these decays,

can be found in [18]. Here we will discuss decays of the type lα → lβγ and their connection

with neutrino physics. As the experimentally most interesting case we concentrate on

µ → eγ. A short comment on τ decays is given at the end of this section.

Consider the partial decay width of lα → lβγ induced by the h+ scalar loop shown in

figure 2. In the limit of mβ ¿ mα it is given by

Γ(lα → lβγ) = 2αm3
α

( mα

96π2

)2

(

(f †f)βα

m2
h

)2

. (3.1)

We will be interested in deriving a lower bound on the numerical value of eq. (3.1) in the

following. Note, that although there is a graph similar to the one shown in figure 2 with

a k++ in the intermediate state, there is no interference between the two contributions

(in the limit where the smaller lepton mass is put to zero). Thus, in deriving the lowest

possible value of Br(µ → eγ) we will put the contribution from k++ to zero. Any finite

contribution from the doubly charged scalars would lead to stronger bounds on mh than

the numbers quoted below.

Using eqs (2.7), (2.11) and (2.12) we can rewrite eq. (3.1) as

Br(µ → eγ) =
αε2mµπ3

18
√

6Γµh2
µµI(r)2

m2
ν

m2
h

(3.2)

' 4.5 · 10−10
( ε2

h2
µµI(r)2

)( mν

0.05 eV

)2

(

100 GeV

mh

)2

(3.3)

With ε non-zero, constrained by eq. (2.9) or eq. (2.10) in case of normal or inverse hierarchy,

Br(µ → eγ) has to be non-zero as well. Its smallest numerical value is found for the largest

possible value of hµµ and I(r).

In order to calculate I(r) we need to fix r consistent with all experimental constraints.

This is done in the following way. The decay width la → lblcld induced by virtual exchange

of k++, see figure 2, is, in the limit mb,mc,md ¿ ma,

Γ(la → lblcld) =
1

8

m5
a

192π3

∣

∣

∣

habh
∗
cd

m2
k

∣

∣

∣

2

. (3.4)

3One could also choose hµµ =
√

4π . However, as pointed out in [18], even hµµ = 1 at the weak scale

will result in non-perturbative values of hµµ at scales just one order of magnitude larger.
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Figure 2: Example diagrams for flavour changing charged lepton decays in the model. In addition

to the diagrams shown, there are also box graphs involving h+ contributing to la → lblcld, as well

as graphs with k++, similar to the one shown, contributing to la → lbγ.
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Figure 3: Conservative lower limit on the branching ratio Br(µ → eγ) as a function of the

charged scalar mass mh for normal hierarchy. The three lines are for the current solar angle sin2 θ12

best fit value (full line) and 3 σ lower (dashed line) and upper (dot-dashed line) bounds. To the

left δ = 0, to the right δ = π. Other parameters fixed at sin2 θ23 = 0.5, sin2 θ13 = 0.040 and

∆m2
Atm = 2.0 · 10−3 eV2.

The most relevant constraint for the current discussion is derived from the upper bound

on τ → 3µ decay, which yields,

|hµτhµµ|
m2

k

<∼ 10−7 GeV−2. (3.5)

For hµτ (mτ

mµ
) = hµµ = 1, this bound implies mk >∼ 770 GeV. For any fixed value of hµµ, we

can therefore fix the minimum value of r, i.e. the maximum allowed value of I(r), which

in turn fixes the lower bound on Br(µ → eγ).

Figure 3 shows the resulting lower limit on Br(µ → eγ) as a function of the charged

scalar mass mh for the case of normal hierarchy. In this plot, we have assumed that

the parameters µ, hµµ (and ∆m2
Atm) take their maximal (minimal) allowed values, thus

we consider this limit conservative. We would like to stress again, that any non-zero

contributions to the decay µ → eγ from k++ can only increase Br(µ → eγ).
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sin2 θ12
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0.6
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Br(µ → eγ) × 10−13

sin2 θ23

Figure 4: Dependence of the lower limit on Br(µ → eγ) for normal hierarchy on neutrino angles,

for hµµ = 1, δ = π, mh = 103GeV. Left plot: (sin2 θ23 = 0.68, sin2 θ13 = 0) dashed line, (sin2 θ23 =

0.68, sin2 θ13 = 0.040) full line, (sin2 θ23 = 0.34, sin2 θ13 = 0) dash-dotted line, (sin2 θ23 = 0.34,

sin2 θ13 = 0.040) dotted line. Right plot: (sin2 θ12 = 0.40, sin2 θ13 = 0) dash-dotted line, (sin2 θ12 =

0.40, sin2 θ13 = 0.040) dotted line, (sin2 θ12 = 0.24, sin2 θ13 = 0) dashed line, (sin2 θ12 = 0.24,

sin2 θ13 = 0.040) full line.

10-3 10-2
0.2

0.6

1.0

4.0

Br(µ → eγ) × 10−13

sin2 θ13

Figure 5: Dependence of the lower limit on Br(µ → eγ) for normal hierarchy on the reactor angle,

for hµµ = 1, δ = π, mh = 103GeV. Other parameters are chosen as (sin2 θ23 = 0.68, sin2 θ12 = 0.40)

dashed line, (sin2 θ23 = 0.68, sin2 θ12 = 0.24) full line, (sin2 θ23 = 0.34, sin2 θ12 = 0.40) dash-dotted

line and (sin2 θ23 = 0.34, sin2 θ12 = 0.24) dotted line.

Figure 4 and 5 show the dependence of the limit on Br(µ → eγ) on the three neutrino

angles. Both plots are for the case of normal hierarchy. Larger values of θ12 (θ23) result in

larger (smaller) upper bounds. Smaller ranges of these parameters obviously lead to tighter

predictions. For θ13, below approximately sin2 θ13 <∼ 0.01 the dependence of Br(µ → eγ) is

rather weak.

Figure 6 shows the calculated lower limit on Br(µ → eγ) for the case of inverted

hierarchy, both, versus the reactor angle and versus mh. Due to the fact that ε must be
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Figure 6: Lower limit on Br(µ → eγ) for inverted hierarchy, to the left: versus the reactor angle;

to the right: versus mh. Parameter choices as before. The three lines are for the current sin2 θ23

best fit value (full line) and 3 σ upper (dot-dashed line) and lower (dashed line) bounds.

larger than ε ' sin θ23/ tan θ13, the expected values for Br(µ → eγ) turn out to be much

bigger than for the case of normal hierarchy. Even Br(µ → eγ) <∼ 10−11 requires already

TeV-ish masses for mh.

The most conservative limits for mh are always found for δ = π, sin2 θ12 = (sin2 θ¯)Min,

sin2 θ23 = (sin2 θAtm)Max and sin2 θ13 = (sin2 θR)Max. For the current bound of Br(µ →
eγ) ≤ 1.2 × 10−11, we find mh ≥ 160GeV (mh = 825GeV) for normal (inverse) hierarchy.

Future experiments [19] expect to lower this limit to Br(µ → eγ) ≤ 10−13, resulting

in mh ≥ 590GeV (mh = 5040GeV). Given these numbers, one expects that the MEG

experiment [19] will see the first evidence for µ → eγ in the near future, if the model

discussed here indeed is the origin of neutrino masses.

Finally, we would like to mention that the decays τ → µγ and τ → eγ can be con-

strained in a similar way. However, the resulting lower limits, also of order O(10−13), are

far below the near-future experimental sensitivities and thus less interesting.

4. Accelerator tests of the model

In this section we will briefly discuss some possible accelerator signals of the model. With

the couplings of h+ and k++ tightly constrained by neutrino physics and flavour violating

lepton decays, it turns out that various decay branching ratios can be predicted. Observing

the corresponding final states could serve as a definite test of the model as the origin of

neutrino masses.

In [18] it has been estimated that at the LHC discovery of k++ might be possible up

to masses of mk ≤ 1 TeV approximately. In the following we will therefore always assume

that mk ≤ 1TeV and, in addition, mh ≤ 0.5 TeV. Given the discussion of the previous

section, this range of masses implies that µ → eγ should be seen at the MEG experiment.
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h
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h
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0.1

0.2

0.3

0.1 0.15 0.2 0.25 0.3

Brµτe
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h
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Figure 7: Ratios of decay branching ratios Brijk
h , see text, versus f1(θ12, θ23, θ13) = tan θ12

cos θ23

cos θ13

+

tan θ13 sin θ23 (top); and f2(θ12, θ23, θ13) = tan θ12
sin θ23

cos θ13

−tan θ13 cos θ23 (bottom). In the right plots

sin2 θ13 < 2.5 × 10−3 has been assumed. All points satisfy updated experimental neutrino data.

The h+ will decay to leptons with a partial decay width of, in the limit mα = 0,

Γ
(

h+ → lα
∑

β

νβ

)

=
mh

16π

∑

β

f2
αβ. (4.1)

We can re-express eq. (4.1) in terms of the parameters ε and ε′ as

Br
(

h+ → e
∑

β

νβ

)

=
ε2 + ε′2

2(1 + ε2 + ε′2)
, (4.2)

Br
(

h+ → µ
∑

β

νβ

)

=
1 + ε′2

2(1 + ε2 + ε′2)
,

Br
(

h+ → τ
∑

β

νβ

)

=
1 + ε2

2(1 + ε2 + ε′2)
.

It is therefore possible to directly “measure” ε2 or ε′2 by calculating ratios of branching

ratio differences, such as the ones shown in figure 7. Here,

Brijk
h ≡ Br(h− → ν`−i ) − Br(h− → ν`−j ) + Br(h− → ν`−k ). (4.3)
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The plots on the left in figure 7 show calculated ratios of branching ratios versus eq. (2.9),

i.e. normal hierarchy, versus ε (top) and ε′ (bottom). All points are obtained by numeri-

cally diagonalizing eq. (2.4) for random parameters and checking for consistency with all

experimental constraints. However, since θ13 is unkown, eq. (2.9) can be numerically cal-

culated, but at the moment not experimentally determined. Thus, the plots on the right

of the figure show the same ratios of branching ratios, but versus (tan θ12 cos θ12)
2 and

(tan θ12 sin θ12)
2. The cut on sin2 θ13 of sin2 θ13 < 2.5 × 10−3 in this plot is motivated by

the expected sensitivity of the next generation of reactor experiments [20, 21]. The width

of the band of points in these plots indicates the uncertainty with which the corresponding

ratios can be predicted.

In case of normal (inverse) hierarchy, assuming best fit parameters for the neutrino

angles, eq. (4.2) indicates that the branching ratios for e, µ and τ final states of h+ decays

should scale as 2/12 : 5/12 : 5/12 (1/2 : 1/4 : 1/4). Inserting the current 3 σ ranges of the

angles, following eqs. (2.9) and (2.10) results in the following predicted ranges

Br
(

h+ → e
∑

β

νβ

)

= [0.13, 0.22] ([0.48, 0.50]) (4.4)

Br
(

h+ → µ
∑

β

νβ

)

= [0.31, 0.50] ([0.17, 0.34])

Br
(

h+ → τ
∑

β

νβ

)

= [0.31.0.50] ([0.18, 0.35])

for normal (inverse) hierarchy. The different predicted branching ratios for final states

with electrons should make it nearly straightforward to distinguish normal and inverse

hierarchy. Measuring any branching ratio outside the range given in eq. (4.4) would rule

out the model as possible origin of neutrino masses.

The doubly charged scalar of the model decays either to two same-sign leptons or to

two h+ final states. The partial width to leptons is, for mα,mβ = 0,

Γ(k++ → lαlβ) =
mk

16π
h2

αβ (4.5)

whereas the decay width to two h+ can be calculated to be

Γ(k++ → h+h+) =
1

16π

µ2

mk
β

(

m2
h

m2
k

)

(4.6)

Here, β(x2) =
√

1 − 4x2 is a kinematical factor.

The couplings hαβ in eq. (4.5) are constrained by neutrino physics, see eq. (2.13), and

by lepton flavour violating decays of the type la → lblcld. For mk ≤ 1 TeV the couplings

hee, heµ and heτ are constrained to be smaller than 0.4, 4 ·10−3 and 7 ·10−2 [18]. Thus, the

leptonic final states of k++ decays are mainly like-sign muon pairs (and possibly electrons).

An interesting situation arises, if mk ≥ 2mh. In this case, one can measure the

lepton number violating parameter µ of eq. (2.2) by measuring the branching ratio of

k++ → h+h+. Combining eq. (4.5) and eq. (4.6) we can write

Br(k++ → h+h+) ' µ2β

m2
kh

2
µµ + µ2β

' fm2
hβ

m2
kh

2
µµ + fm2

hβ
. (4.7)
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Figure 8: Lines of constant Br(k++ → h+h+), assuming to the left hµµ = 1: Brhh
k = 0.1, 0.2, 0.3

and 0.4 for dotted, dash-dotted, full and dashed line. The vertical line corresponds to mh = 208 GeV

for which Br(µ → eγ) = 1.2× 10−11 and horizontal line to mk = 743 GeV for which Br(τ → 3µ) =

1.9 × 10−6, i.e. parameter combinations to the left/below this line are forbidden. Plot on the right

assumes hµµ = 0.5. Lines are for Brhh
k = 0.4, 0.5, 0.6 and 0.7, dotted, dash-dotted, full and dashed

line. Again the shaded regions are excluded by Br(µ → eγ) and Br(τ → 3µ).

Here, hee ¿ hµµ has been assumed. (For non-zero hee replace simply hµµ → hµµ + hee in

eq. (4.7).) Plots of constant Br(k++ → h+h+) in the plane (mk,mh) are shown in figure 8.

Here, µ = fmh, with f = (6π2)1/4 has been used.

Figure 8 shows the resulting branching ratios for 2 values of hµµ, fixing in both cases

the couplings fαβ such that the atmospheric neutrino mass is correctly reproduced. For

hµµ <∼ 0.2 the current limit on Br(µ → eγ) rules out all mh <∼ 0.5 TeV, thus this measure-

ment is possible only for hµµ >∼ 0.2. Note that smaller values of µ lead to smaller neutrino

masses, thus upper bounds on the branching ratio for Brhh
k can be interpreted as upper

limit on the neutrino mass in this model.

5. Conclusion

The observed smallness of neutrino masses could be understood if it has a radiative ori-

gin. In this paper, we have studied some phenomenological aspects of one well-known

incarnation of this idea [16, 17], in which neutrino masses arise only at 2-loop order.

Given the observed neutrino masses and angles, it turns out that the parameters of

this model are very tightly constrained already today and thus it is possible to make

various predictions for the near future. Perhaps the phenomenologically most important

one is, that one expects that the process µ → eγ has to be observed in the next round

of experiments, i.e. Br(µ → eγ) ≥ 10−13 is guaranteed for singly charged scalar masses

smaller than 590 GeV (5.04 TeV) for normal (inverse) hierarchical neutrino masses, and

larger or even much larger branching ratios are expected in general. At least for the case of

inverse hierarchy an upper limit on the decay µ → eγ of this order would certainly remove

most of the motivation to study this model.
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On the other hand, if µ → eγ is observed in the near future, it will be interesting to

search for the charged scalars of the model at the LHC. As we have shown, in this case,

several branching ratios of the decays of both, the singly and the doubly charged scalar are

tightly fixed, mainly by data on neutrino angles. Observation of branching ratios outside

the ranges discussed, would then definitely rule out the model as a possible explanation of

neutrino masses.
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